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1 Introduction

The time interval between successive transactions in a �nancial market conveys infor-

mation about the potential liquidity e¤ects. This e¤ect di¤ers from the more commonly

studied price impact which determines how much can be traded without disrupting

prices. Intertrade duration is an indication of the ability to trade at any price. It

is already known that intertrade duration displays persistence and time clustering,

leading to the development of the autoregressive conditional duration (ACD) models

of Engle and Russell (1998) and further developments in Bauwens and Giot (2000),

Zhang, Russell and Tsay (2001) and Bauwens and Hautsch (2006) particularly. These

models treat the trade interval as having either unit root or stationarity properties.

Practically, this means that shocks to duration are treated as either instantly absorbed

or permanent. In reality, the observed behaviour of the data suggests the truth lies

somewhere between these two extremes. Shocks to duration, caused perhaps by infor-

mation arrival, may have longer run, but not permanent, e¤ects on future duration.

Jasiak (1999) develops the concept of the fractionally integrated ACD (FI � ACD)

model for this case, and applies it to Alcatel and IBM stocks.

In this paper we develop the FI � ACD(p; d; q) model of Jasiak and apply it to

the US Treasury market. The US Treasury market is arguably the most important

�nancial market in the world, in 2008 it remains the largest single market by turnover

volume. Its microstructure has not been signi�cantly explored, mainly due to di¢ culties

with databases. In recent years the market has transited from a voice-over protocol to

Electronic Communication Netwrok (ECN), see Mizrach and Neely (2006). Previous

studies on the voice-over network include Fleming and Remolona (1999), Green (2004)

and Brandt and Kavajecz (2004) inter alia). Empirical work concerning the more recent

ECN data is only beginning to emerge, see Mizrach and Neely (2006,2007), Jiang et

al (2007), Dungey, McKenzie and Smith (2008). Durations in this market have not

previously been studied.

Since 2000 US bond market trading has been dominated by the ECNs of Cantor

Fitzgerald and ICAP. The eSpeed (Cantor Fitzgerald) and BrokerTec (ICAP) data-

bases provide trading information for each of these markets. Mizrach and Neely (2006)

�nd that there are qualitatively few di¤erences between the two. The dataset for the

current paper is drawn from the eSpeed database. The most obvious advantage of the
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new ECN datasets over the previous voice-over protocol data provided in GovPX is

that trades are accurately tracked and identi�ed. The eSpeed dataset represents 10

millisecond shots of the transaction process, which is the maximum updating frequency

that the traders using this platform see in real time. The focus here is on the time

taken between intiations of successive transactions, the trade duration, for trading in

the on-the-run Treasuries of the 2 year benchmark bonds. The sample period is Janu-

ary 3, 2006 to October 10, 2006, representing some 116,479 observations. We restrict

our attention to the most active part of the trading day, from 7:30am to 5:30pm New

York time. On average each day in the sample contains 623 trades worth $US21 billion.

The concept of duration in this market compatible with those used in others is the

time between the intiation of consecutive trades.Intradaily data is typically charac-

terised by strong diurnality (see Engle and Russell, 2004), that may bias any estima-

tion results. We follow the approach of, inter alia, Engle and Russell 1998, 2004 and

Zhang, Russell and Tsay (2001) by constructing diurnalised estimates of duration and

workup times. De�ning the raw duration between the ith and i � 1th transactions as
xi = ti � ti�1; then the adjusted duration is:

x�i =
xi

� (ti�1)
; (1)

The deterministic e¤ect on trade durations due to the time of day is de�ned as the

expected duration conditioned on time-of-day � (ti�1) = E (xijti�1). This expectation
is obtained by averaging the durations over thirty minutes intervals for the trading

day. A cubic spline is employed to smooth the time of day function across the thirty

minutes intervals.By construction, the mean of x�i is appoximately 1.

A summary of these diurnalised trading intensity measures is also presented in

Table1. ncluding the number of trades (n), sample average (�), p-value for a test of

the null of a sample average of zero (in parenthesis) and standard deviation (�2). The

results of a battery of Ljung-Box tests for pth order serial correlation in xi and the

corresponding squares are also presented in Table 1 and the results uniformly reject

the null hypothesis of no serial correlation. The results show considerable structure in

x�i ; the adjusted durations. The autocorrelation functions (ACF) for the data in Figure

1 display the slow decay which motivates the use of the FI-ACD(p; d; q) approach.
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2 Duration Modelling

The ACD model introduced by Engle and Russell (1998) is designed to capture the

clustering and serial correlation in the duration between trades. The ACD (p; q) is

given by

x�i =  i"i, (2)

 i = �+ 
(L)x�i + !(L) i

where  i is the expected value of duration given the information set, the error term

"i;follows some de�ned process, 
(L) = 
1L + 
2L
2 + : : : + 
pL

p and !(L) = !1L +

!2L
2 + : : : + !qL

q. In many markets an ACD(1,1) with exponential or Weibull error

distribution has been found to be a good representation of the data (see Hautsch 2006

for example).

The expected duration can be expressed as an in�nite-order process

 i = [1� !(L)]�1�+ [1� !(L)]�1
(L)x�i (3)

and de�ning vi = x�i �  i this is conveniently expressed as

[1� 
(L)� !(L)]x�i = �+ [1� !(L)] vi (4)

or equivalently de�ning �(L) = [1� 
(L)� !(L)]�1

�(L)(1� L)x�i = �+ [1� !(L)] vi (5)

Analagously to the development of FIGARCH in Baillie, Bollerslev and Mikkelsen

(1996), the FI-ACD model is simply a replacement of the (1�L) operator in (5) with a
fractionally integrated operator (1�L)d. The representation of interest for estimation
is

[1� !(L)] i = [1� !(L)]�1�+ f1� [1� !(L)]�1�(L)(1� L)dgx�i (6)

Table 2 presents quasi-maximum likelihood estimates of the ACD(1; 1) and the FI �
ACD(p; d; q) for lag orders p; q = 1; 2, asssuming an exponential distribution for "i.

Conditions to ensure the positivity of the expected duration will be analagous to

those for FIGARCH. Recently, Conrad and Haag (2006) have developed necessary and
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su¢ cient conditions for the cases where q � 2. These involve inequality constraints

on combinations of the estimated parameters. Each of the FI-ACD(p; d; q) models

presented in Table 2 satsify the parameter restrictions to support a positive covariance

matrix (the relevant cases are Theorem 1, Case 1 for the FI-ACD(1; d; q) models and

Theorem 2, Case 2 for the FI-ACD(2; d; q), see Conrad and Haag 2006 for the full set

of potential cases).

The results in Table 2 are instructive in that they illustrate �rst, just how much

of the structure in the durations is captured by the ACD(1; 1): However, any para-

meterisation that allows for long memory represents a more appropriate conditional

characterisation of the durations. The estimated fractional di¤erencing parameter d̂ is

statistically signi�cantly di¤erent to zero for all FI �ACD(p; d; q) models considered.
This result suggests that the ACD(1,1) represents a potentially misspeci�ed conditional

charaterisation of the duration data. For our preferred model, the FI �ACD(2; d; 2),

despite a sample size of excess of 116,000 observations there is little evidence at the 1

percent level of remaining correlation in the data. The �rst 10 serial correlation coe¢ -

cients from the FI � ACD(2; d; 2) model are f-0.0048,-0.0067,-0.0015,-0.0002,0.0014,-
0.0003,-0.0035,-0.0089,-0.0001,-0.0075g all of which are very close to zero in magnitude.
These results suggest that there is long memory in shocks to trade durations in the 2

year US Treasury bond, which can be parsimoniously captured by an FI�ACD(2,d; 2)
model.

3 Summary and Conclusion

Unlike the equity and foreign exchange markets, there is relative little existing re-

search into trading in �xed income markets. This paper examines a sample of 116,479

durations between trades in US Treasury Bonds with 2 year maturity sampled over

the period January 3, 2006 to October 10, 2006. We �nd strong evidence of persis-

tence in these durations. In contrast to the equity and foreign exchange markets, an

ACD(1; 1) model is not su¢ cient to capture all of the structure in these data. The

evidence suggests that an FI�ACD(2,d; 2) model provides a parsimonious condtional
characterisation of the data.
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Table 1: Data Descritpion
Diurnalized Durations

n � �2 Q (10) Q (20)
116; 479 1:1414 5:3739 6176:3812 7792:5831

[0:0000] [0:0000] [0:0000]

Table 2: FI-ACD Estimates
(1; 0; 1) (1; d; 0) (1; d; 1) (2; d; 1) (2; d; 2)

� 0:0067 0:0054 0:0033 0:0000 0:0000
(0:0009) (0:0029) (0:0012) (0:0001) (0:0001)


1 0:9874 � 0:4864 0:4977 0:5527
(0:0020) (0:0266) (0:0227) (0:0201)


2 � � � � 0:0456
(0:0104)

!1 0:9398 0:0982 0:6673 0:6678 0:7687
(0:0051) (0:0094) (0:0249) (0:0252) (0:0228)

!2 � � 0:0087 0:0064
(0:0023) (0:0021)

d � 0:2119 0:3095 0:3004 0:3355
(0:0063) (0:0154) (0:0095) (0:0165)

Q (10) 145:86 61:407 36:959 37:230 25:549
[0:0000] [0:0000] [0:0001] [0:0001] [0:0044]

Q (20) 188:958 86:806 44:985 45:521 37:555
[0:0000] [0:0000] [0:0011] [0:0009] [0:0100]
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Figure 1: Autocorrelation Function for x�i :
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